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SUMMARY

The recent interest in radiofrequency (rf) induction heating as a
means of producing a plasma has prompted work on theoretical techniques
that can adequately model the physical processes occurring in the plasma.
Efforts to solve the rf induction plasma problem have been hampered by a
lack of complete input data reported by the experimenters, most notably
the work coil geometry and the magnetic field intemsity at the plasma
radius,

The numerical techniques and approximate analytical closed form
solutioné of the energy balance equation and Maxwell's equations used to
describe the plasma require a knowledge of the electric and magnetic field
values at the plasma radius and the coil geometry. The only comparisons
of theoretical solutions with experimental results to date have been in-
direct comparisons based on reported power requirements;

Measurements of the temperature profiles in zn rf argon plasma
were made over magnetic field intensities ranging from 20 amp turns/cm to
80 amp turns/cm, The results were compared with a one-dimensional numeri-
cal treatment of the governing equations and with an approximate closed
form analytical solution that neglected radiation losses.

The average measured temperatures in the plasma-compared well with
the numerical treatment, though the experimental profile showed less of an
off center temperature peak than predicted by theory. This may be a re-

sult of the complex turbulent flow pattern present in the experimental



torch and not modeled in the numerical treatment. The radiation term
cannot be neglected for argon at the power levels investigated., The
closed form analytical approximation that neglected radiation led to tem-
perature predictions on the order of 1000°K to 2000°K higher than measured
or predicted by the numerical treatment which considered radiation losses.

The governing equations are highly coupled to the electrical con-
ductivity of the working fluid. An aerosol of submicron tungsten particles
was added to the argon to effect a significant increase in the electron
number density and temperature measurements were taken and compared with
the theory. The temperatures were of the order of 1000°K lower than for
the cases of pure argon, and compared well with thertheory at tungsten

partial pressures of 4.3 x 10-3 atm and 6.1 x 1(_')-3 atm, A tungsten par-

tial pressure of 3.6 x 10-2 atm led to a divergence between the theory
and the experiment as the tungsten atom number density reached the point
that electron-tungsten collisions could no longer be neglected in the
theoretical treatment of the electrical conductivity.

A parametric study was conducted to determine the effect of varia-
tions in the inputs to the analysis which can be varied experimentally,
and to determine the effect that the uncertainty in the transport proper-

ties of argon has on the predicted temperature profiles.



CHAPTER 1
INTRODUCT ION

The recent interest in radiofrequency (rf)} induction heating as a
means of producing high density plasmas has prompted work on theoretical
techniques that can adequately model the physical processes occurring in
the plasma. The theoretical treatment must include the heat transfer
problem and the determination of the electromagnetic field intensities
inside the plasma, Previcus theoretical work on modeling the d,c. are
plasma forms a basis for treating the energy balance problem, but these
equations must now be treated simultanecusly with the electromagnetic
field equations as they apply to the induction arc.

Efforts to solve the rf induction plasma problem have been hampered
by a lack of complete input data reported by the experimenters., The work
coil geometry and the magnetic field intensity at the plasma radius are
needed as starting points for quantitative comparisons of spectroscopi-
cally measured temperature profiles, FExperimentally measuring the mag-
netic field intensity at the plasma radius is difficult since the coil
currents are high (of the order of 50-150 amperes, rms) and the frequen-

cies are high (typically between 2 and 30 Miz). |

The development of the induction arc stems from work by Hittorf1
on the low pressure electrodeless ring discharge. Babat2 is credited
with inventing the induction arc in 1942 when he used a powerful vacuum

tube oscillator to raise the pressure of a ring discharge up to atmospheric



level. T. B. Reed3 first demonstrated in 1961 that an "induction torch
at one atmosphere could be produced. He used a 26 mm outside diameter
open ended quartz tube surrounded by a 3/16 inch copper work coil to pro-
duce an argon plasma. Spectroscopic temperature profiles of argen plas-
mas were determined by Goldfarb and Dresvin,4 Schultz and Anderson,5 and
Rovinskii, Gruzdev, et al.,6 and the results of their work are presented
in Figure 1, taken from Eckert‘s7 survey of the state-of-the-art of in-
duction plasmas, Stoke38 reported temperature profiles of an argon plasma
at one atmosphere along with the power dissipated per unit length of work
coll which Eckertg’lo used as a basis for comparison with the numerical
solutions of Pridmore-Brown11 and his own closed-form analytical predic-

tions.9’12

Stokes used a water-cooled quartz tube with a 2.3 cm inner
radius and excited the gas at 3.8 MHz. The power dissipafion was deter-
mined from the measured heat flux into the cooling water and from the
total radiation emitted. The applied magnetic flux was not reported, A
wide range of magnetic flux intensities was used in the calculations
until the predicted radiation and conduction values matched those re-
ported in the experiment. The predicted temperature profiles were in
good agreement with spectroscopically measured values though the experi-
mental profiles were flatter, as seen in Figure 2, The experimental tem-
perature profiles were determined from continuum intensity measurements
at 4288 A.

This dissertation describes work aimed at providing spectroscopi-

cally determined radial temperature profiles in an rf produced argon

plasma over a wide range of experimentally measured applied magnetic flux
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intensities and to compare the results with a representative numerical
analysis based on the one~dimensional Elenbaas-Heller equation and with

an approximate closed form analytical solution. A bette; judgment can

then be made on the accuracy of these theoretical treatments., Additionally,
the argon plasma is seeded with submicron tungsten particles to effect a
significant change in the electrical conductivity of the gas and a com-
parison is made between the experimentally observed changes in the tem-

perature profiles with those predicted by existing theory.



CHAPTER II1

THEQRETICAL STUDIES

Introduction

The heat balance at each pesition in an induction plasma arc is
given by the Elenbaas-Heller equation which balances the heat generated
through current dissipation with conduction, convection, and radiation

13,14 The heat balance equation is coupled to Maxwell's equations

losses,
gqverning the electric and magnetic fields in the induction plasma and
both sets of equations must be satisfied.

Analytical and numerical attempts to solve the problem are hindered
by a 1aék of experimental data that include all input conditions required
for quantitative comparisons, most notably the magnetic field strength
inside the work coil., Numerical methods are cumbersome and require a
digital computer, Analytical studies have failed to produce gquantitative
predictions ﬁnivérsally applicable to the variety of experimental condi-

tions and gases used in rf plasma work. Eckert and Brownll’12

compared

their numerical method to the experimental work of S;okes,8 but even in

this case Stokes did not measure the ampere turns of the induction coil.

This measurement is needed to determine the magnetic field strength inside

the work céil. |
The transport properties of argon are examined in this chapter

because the quantitative results of the solution to the plasma problem

are dependent on the values chosen for the transport properties and the



"

theory serves as a basis for predicting the properties of a tungsten

seeded argon plasma.

Governing Equations

Consider the plasma to be an infinite axially symmetric cylinder

with an applied altermating axial magnetic field
H, = Hoexp(12ﬂvt) (L)
where v is the frequency of the alternating current I in the work coil as

shown in Figure 3.

Maxwell's Equations

The relevant Maxwell equationsl5 are

F-.0B__ ?H
V XE = t s (2)
F-F+@ .7, 0E
VXH=J+3T=T4e (3)
J = ok (4)

where E and H are the induced electric and magnetic field intensities, B
is the magnetic induction, D is the electric displacement current, J is
the electric current density, and ¢ is the electrical conductivit& of the
plasma. Equation (4) assumes a purely resistive plasma, i.e,, there is
no imaginary component of the conductivity. In the absence of polariza-

tion or magnetization,



Figure 3. Cylindrical Coordinates of Plasma and Electromagnetic Field
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=

where u is the permeability and ¢ the permittivity of the gas. The
Poynting vector g, defined by S =K X ﬁ, represents the flux of electro-
magnetic energy and points in the direction of propagation of the wave.
Following the treatment of Brown, et al.16 as modified by Freeman
and Chase,l7 equation (2) expressed in cylindrical coordinates for an

electric field with component E. only and magnetic field with axial com-

]
ponent Hz only becomes:
E, +r EEE = - EEE r (7)
6 dr arY:
or, from equation (1)
1d :
 ap By = - i2muH, | (8)

Similarly, equations (3) and (4), in the absence of displacement
currents, can be expressed in cylindrical coordinates for the applicable

electromagnetic field components

—=-7J =-0E (9)

The assumption of a good conductor (i.e., no displacement currents)

is equivalent to requiring
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g > e2mv {10)

This is a valid assumption for argon at 4 MHz over the temperature
range investigated as can be seen from the electtical conductivity values
for argon presented later,

Egquations (8) and (9) may be combined to eliminate either ﬁ% or Eé.
Differentiating equation (8) and substituting into equation (9}, the equa-

tion for the induced electric field is obtained

. 1
- (12mwo + ;—2—) Eg=0 (11)

If Ee is divided into its real and imaginary parts, equation (11) results

in two equations

dzER 4B, E
5 +trg - FtMImME =0 (12)
dr
2
d“E dE E

r,1_1r I _

>t TgE c T3 - w2my ER'O (13)
dr r

The rate at which electromagnetic energy in a unit volume is dis-
sipated can be arrived at from equations (2) and (3). Scalarly multiply-
ing equation (2) by H and equation {3) by -E and adding the two equations

produces

H-(V X E) - E-(v x H) = - bb—t @H® + ¢E%) - T.E ‘ (14)
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Now using the wvector identity

V.(E x H) = H-(V X E) - E-(V X H) (15)
to get
v.(E x H) = - 6% QE + cEY) - T.E (16)

and integrating over a unit volume drv, and applying Green's theorem to

the left hand side of equation (16), one obtains

- - = 2 2 - —
J (E X H)-ds = - 2 J (eE + pH )dr - I J.EdT (17)
ot

s v v

The first term on the right hand side represents the time rate of
decrease of stored electromagnetic enexrgy in the volume and the second
term on the right hand side represents losses by Joule heating or gains
by an applied electric field. The left hand side then must represent the
net outward flow of energy across surface s and leads to the definition

of the Poynting vector S

i
i
=
i3
=] |

(18)

which represents the flux of electromagnetic energy. For steady state,

Poynting's theorem is then

V.S = - J-E , (19)
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or from equation (4) and for our geometry
v.5 = - o]g|? (20)

If E is divided into its real and imaginary parts, E_ and ER’ the

1
time averaged root mean square value of the electric. field in the 6 direc-
tion is then

Ee =

2 2, 2%
-5 (EI + ER ) {21)

and the power input per unit volume for use in the steady state energy

balance equation is then UEez or

B, =% o (B +E) (22)

Energy Bélance Equation

The energy balance equation equates the time rate of change of
energy in a unit volume with the divergence of the heat flux, the power
radiated, and the electromagnetic power dissipated by the applie& electric

field

2 .
oC, 2L - T + oE," - & (23)

DT , . .
where Dt stands for the total time derivative of the temperature, T, p is

the plasma density, Cp the specific heat at constant pressure, )\ is the

thermal conductivity, and ¢ is the radiation source strength. The second
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term on the right side of the equation represents the dissipative compo-
nent of the electromagnetic energy.
Expanding equation (23) in cylindrical coordinates and assuming a

constant pressure axisymmetric plasma, one obtains

2 2
el T Ty o 2T LT _ 27T
pCP (Dt U T Y E)Z) A (brz trar T bzz) (24)

2
+ar L&)

BT 2
(bz + GEe ] 0
where u, and u, represent the radial and axial gas velocities,

Assuming steady state conditions and rearranging the terms, one

obtains the two-dimensional energy balance equation

2 2 2
r

2
ar \or/ 7 (%g) ] (25)

OT bT) 2
-C(— - & =
pC, U dr t U pe t GEG $ =0
The energy balance equation may be reduced to one-dimensional form

if it is assumed that the temperature gradients in the axial direction are

very small compared to the temperature gradients in the radial direction

2 2 2 2
07« ¥ ana (&) «< ().
bz brz oz or
1 d dT 2
rar fhar PG N T -0 (26)
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The radial flow velocity, u_s is assumed zero in the one-dimensional

9,18 19,20

analytical treatments of Eckert’ ’"  and Rovenskii, et al., and in the

one-dimensional numerical treatments by Brown,11 and Miller and Ayen.Zl

The work of Chase,zz’23

however, shows that the rf field imposes a magnetie
pressure gradient that causes the charged particles t; preferentially mi-
grafe toward the center of the plasma, and through collisions give a net
inward radial velocity that forms a double vortex flow. Experimental work
by Chase22 on an rf plasma with a configuration similar to the one used in
this research shows the radial velocity to be of the order of magnitude of
10% of the net axial flow velocity.

Equation (26) may be linearized by introducing the heat conduction

potential defined by
T
S = f A dl : (z27)
o

With the aid of equation (27), equation (26) becomes

2 pC u
d°s 14ds fTp'rds 2 ..
T dr y o dr + cEe -8 =10 _ (28)

If E, is divided into its real and imaginary parts as shown in

equation (21), equation (28) becomes

2 pC u
1 ds ds 2 2
_7+¥“;‘_%£E+é°(% +ET) -8=0 (29)

and equations (12,13, and 29) along with the continuity equation in

cylindrical coordinates
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1d _
r ar e =0 (30)
and boundary conditions:
Twall
8§ = I 2dT
r dE, Eg
r=20 = r =R E{_—+'r—=0 (31)
= dE. E
I I _
5 tT = 2wH{R)

form a one-dimensional system of equations that describe the plasma.

Solution Techniques

Eckert7 provides an up to date review of the reported techniques
used for numerical solutions to the equations governing the induction arc
as well as the assumptions necessary for approximate.closed form solutions.
He pointed out that lack of complete imput data from reports of experimen-
tal work makes quantitative comparisons difficult and that experimenters
did not attempt to minimize two-dimensional or convection effects ih their
work.

Keefer24 at the University of Florida, developed a one-dimensional
numerical technique programmed under the direction of Sprouse25 at the
Arnold Engineering Development Center, This program (called SUPERSIX) was
obtained and converted to run on the Univac 1108 at Georgia Tech to permit
a comparison of the experimental work reported in this aissertation with
a numerical analysis of the governing equations.

The analysis reduces the sixth order system of equations given by
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equations (12, 13, 29, 30) to six first order differemtial equations as
follows. Defining
T
J A dT
S 0
=3 s (32)
v J A dT

(v}

where TW is the input wall temperature and

dyl

Y2 T x (33)
Y3 = By

_ dER
Yo = * dx
V5 = By

_ dEI
Yo = ¥ dx

where x is the non-dimensional radial position x = r/R, one obtains from

equations (12, 13, 29, 30)

dy1
ax 72 (34)
dy, ,Rou_ €_(y.) RPa(y,) R%2(y.)
2 “( R p“1 _1_) 02,2, Y1
dx Y “x Y2 25 Y3 t Y5 5 '

{continued)
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dy3

—3_1
dx x 74
dy
4 1 2
3 =73 2R xcuZﬁvy5
s 1
dx x°6
dy
6 1 2
x —=7s + 2R XOMZ“VY3

where R is the plasma radius with boundary conditions
x=1: ¥, = 1; Vs + g = - 2ruvRH(R) ; Yat ¥, = 0 (35)
x=0": Yo =Y4 = Yg = 0

A Runge-Kutta integration scheme is used to solve the system of equations
(34,35) with the required inputs being frequency, wall temperature, plasma
radius, and magnetic field strength at the outer sufface of the plasma.
The radial flow velocity at the wall is input through the term pu R. Pro-
visions are made in the program for parametric analysis using the last
plasma profile as the initial guess for a new case where only one input
parameter is slightly varied. The analysis does not take axial convectiom
into account, as can be seen from the governing equations. Typical run
times on the Univac 1108 for convergence to the first case are 20-30
minutes.

19,20

The analytical work of Gruzdev, Rovenskii, and Sobolev provides
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a simplified closed form solution to the one-dimensional problem that is
useful for comparison with the numerical method and the results of this
research., By considering E and H as root mean square values such that the
value of the Poynting vector becomes E-H and neglecting radial convection
and radiation, the one-dimensional energy balance equation for steady

state becomes

VeAVT + V+EH = 0 (36)
or in cylindrical coordinates
e ( any _
r dr rEH - T A dr/ 0 (37
Since both fluxes vanish at r =0
dT '
qr - EH ) (383
From equation (9)
dr _ _HdH
A dr = T g dr (39)

Integrating equation (39) from the outer boundary r = R where the temper-
ature equals the wall temperature, Tw’ and the magnetic field has a value

at the boundary of HR
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2

fT o(T) A(T) dT = - r H(r) dH = Eg-: 1 - (-‘115{9-)1 (40)
TR R R

If the magnetic field as a function of r is known, the temperature at

any point may be calculated, If R(0) << H,, which is a good assumption

R
2 ,

according to the experimental work of Eckert 6 and the theoretical predic-

tions of the numerical analysis, thenm the maximum temperature (which occurs

at the center of the plasma in the case of no radiation) may be approxi-

mated from the magnetic field at the plasma radius from

Hy = [2 IZ(O)O‘(T) A (T) d'r]é | 41)
W

The choice of TW does not affect the final T(0) for a given HR for
argon as long as Tw < 4000°K because of the very low values of ¢ and }

below about 5000°K.

Transport Properties

The values chosen for the tramsport properties éf.argon, namely
the electrical and thermal conductivities and radiation source strength,
bear directly on the quantitative results of the analysis of the govern-
ing equations. The values are also important because théy form the basis
for predictiné the changes in the properties in those cases where the
plasma was seeded with tungsten.

Electrical Conductivity

The mobility, p, of a gas is defined in terms of the drift velocity
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of the electrons, u and the applied electric field, E

(42)

h=
1l
(=]

and the electrical conductivity, o, in terms of the current density, 3,

is given by

(43)

® |9|

If it is assumed that an electron loses all of its momentum in each col-

lision, then
qﬁ =m_uv (44)
where q is the elementary electric charge, m, is the mass of an electron,

and Ve is the electron collision frequency. From equations (43) and (44)

the average drift veleocity is

T = 4B
u === (45)
e’ e
and the current density is
T-avu (46)

where N is the number density of electrons. Substituting equation (45)

inte equation {46)
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J = (47)

or from equation (43)

(48)

The electron collision frequency can be expressed in terms of Qii {the
effective momentum transfer collision cross section between electrons and
species i of gas j), the velocity of the electrons Vo and the number

density of species i of gas j Ni.

(49)

. j . = VI
where the mean quantity v, Qei may be approximated by Ve Qei when Qei is

taken at ;é. Then
-~ J ol '
v v_ 3 § Ni Qei (50)

If the electron velocity distribution is Maxwellian

(BkTe>% 51

T
e

where k is the Boltzmann constant and 'l‘e is the electron temperature.

Then
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qu

(meSkTe)% s v ol
s 3 % i Vel

¢ = (52)

The Saha equation predicts the number density of electrons from the number

]

density of neutrals of gas j, N0

N 20 (M@ 2m ©E j %
0 (BR0F 0l ) o

where h is Planck's constant, wJ is the ionization potential of gas j,
AE is the lowering of the ionization potential due to increased charged

particle interactions found in the high temperature high demsity environ-

J

ment of a plasma, and ul and ué are the partition fumctions for singly

ionized and neutral atoms defined by

S=l'l*
3 -Es/kT
Uy = I | (54)
s=1
*
s=n
g . e-ES/kT
+ s
s=1

+ . '
where 8 and g, are the statistical weights of the neutral and singly
ionized atoms at excitation level s (s = 1 ground state) and ES is the

bound energy of level s. Substituting equation (53) into equation (52)

and simplifying
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¢ o [

_ ul (T)
e = (55)

[S1AY

h

£z N QJ
jll

For the case of argon only, equation (55) becomes

1 1——— _ (@-AE
qzﬂ (mei:Te)t Ngr % 2:+E$; (e (E%ﬁr))%

_ 0 (56)

Figure 4 is a compilation of results from the theoretical works of De-

voto,27 Yos,28 Cann,29 and Cambel,so and the experimental work of Emmons,?’1

Lin et al.,32 and Lau.33 The empirical values used in this study are
determined by an analytical expression that best represents the available
experimental and theoretical data.

For the case of argon seeded with submicron tungsten particles,
the summation over j in equation (55) must pow include both argon and

tungsten. Performing this summation and factoring out the expression for

pure argon conductivity one obtains -

—
W w Ar
1+ .I_qg__....t_._o__exl: w]
NAr oY uAr P
_ 0 0+
cAr+w B CAr 5 N¥ Qw (57)
i i ei
1 +
Ar _Ar
E Ni Qei

A
Substituting in values for ¢ T and ww from Drawin and Felenkok34 and
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w
u
average values for uir and ugr from Olsen35 and taking ~§ =1 from
36 "0
Laun equation (57) becomes
s
1+ (——) exp [7.78/kT]
_ 5.519 (58)
cAr+w z NW QW
L 41 i el
Ar _Ar
B % Ni Qei i

The electron collision cross sections for tungsten have not been
calculated or experimentally measured, but based on the cross sections of
37 ] . L 38
other metals and on the predicted values of uranium and similar metals,
A
it was assumed that (& N Qw.)/(z Nér Q ?) << 1. This assumption is sus-
T 1 Tei”/ M i el
pect for tungsten number densities greater than one percent of the argon
number density.
The effect of the seed can be seen in Figure 5 which shows the
electrical conductivity of seeded argon from equation (58) compared with

the conductivity of pure argon.

Thermal Conductivity

A compilation of argon thermal conductivity data is plotted in Fig-
) . 27 28 39
ure 6 showing the theoretical work by Devoto, Yos, Admur and Mason,
29 , 31 40
Cann, and the experimental work of Emmons, and Knopp and Cambel,
An analytical expression that yields the empirical values used in
the numerical analysis was fit to the experimental data. It is felt that

the experimental values are more reliable since they are easy to measure

and are in good agreement, while the theoretical basis for thermal con-
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ductivity is quite complex.

Devoto27 conveniently treated the contribution of the electroms to
the thermal conductivity of the plasma separately, so the effect of the
addition of tungsten seed was assumed to be an increase of the electron
contribution to the thermal conductivity, due to an increase in the elec-
tron number density. The effect of the tungsten collisions on the heavy
atom thermal conductivity was neglected because of the low tungsten par-
tial pressures, For evaluations of the case of tungsten seeded argon,
the thermal conductivity due to the heavy atoms was assumed the same as
that of pure argon. The contribution of the electrons to the thermal con-
ductivity was calculated by taking the value of the electron component
of the thermal conductivity of pure argon at the temperature required to
produce the same number density of electrons as was present in the seeded
case, Figure 7 ié a plot of the thermal conductivity assumed in the analy-
sis and a plot of the thermal conductivity of the tungsten seeded argon
for tungsten number densities used in the experiment where the electron
contribution is added at a temperature that yields an equivalent electron
number density for the case of pure argon. This approach to accounting
for the tungsten is considered to be as good an approach as possible at
the present time due to lack of data on heavy metal collision cross sec-
tions.

Radiation Scurce Strength

The values used in the numerical analysis for the radiation source

strength term were taken from the d.c¢, arc data of Emmons31 modified below

9000°K to bring them more in line with the theoretical estimates of Horn41
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and the more recent induction discharge data obtained by Stokes.42 It
was felt that the induction arc data were more reliasble at the lower tem~
peratures, St:okes42 points out that "An important difference between the
induction discharge experiments reported here and the arcs used for most
of Emmons work is that stable, much larger plasmas can be obtained at
low peak temperatures with induction heating." Pridmore--Brown,11 in his
numerical analysis, did much the same things at the suggestion of Eckert
who felt that Emmons' values were too high at low temperatures. Miller
and Ayenzl arrived at a radiation source strength term for their two-
dimensional analysis by extrapolating the data of Evans and Tankin43 to
lower temperatures which yielded values significantly below those of
Emmons at temperatures below 10,000°K.

Figure & is a plot of the experimental data of Emmons,31 Stokes,42
Evans and 'I,‘ankin,43 and Schreiber and Hunter44 along with the theoretical
values derived by Horn,41 and the values predicted by the Kramer-Unsold45
theory, The empirical values chosen for this work are also plotted. The
radiation source strength term was not modified for the addition of tung-
sten seed, Work by United Aircraft46 on tungsten seeded plasmas with
similar operating characteristics shows less than a 10% increase in power
radiated for tungsten partial pressures on the order of 0.005 atm. This

assumption may not be valid for higher tungsten partial pressures.

Effect of Magnetic Field

The magnetic field strength in the coil for the case of no plasma
represents a maximum, since the field strength within the plasma is re-

duced, Assuming an rms current of 100 amps in the work coil and an effec-
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tive turn per cm of 0.52 (verified by experiment--see Appendix A), the
magnetic field intensity would be 52 amp-turns/cm, which corresponds to a
magnetic induction of about 5 x 10"3 webers/mz, or 50 gauss., The work of
Devoto27 has shown that it would take a magnetic induction of one to two
orders of magnitude greater to cause any change in the transport proper-
ties. Further, the results of the numerical analysis and the experimental
work of Eckert47 and Trekhov et a1.48 show the magnetic induction inside
the plasma to be an order of magnitude lower than the field strength at

the plasma radius.
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CHAPTER III

INSTRUMENTATION AND EQUIPMENT

RF Plasma Generator

The radio-frequency plasma generator and associated gas flow system
was designed and built by Dr. Robert A. Beons as part of his dissertation
research. A detailed description of the equipment and theory of operation
are found in his dissertation.

The generator operates at 4 MHz and utilizes an air cocled Eimac
4CX-35000C tetrode with an output power of up to 85 kW. The torch and
operating controls are located in a copper lined room with a viewing port
in the wall that .allows spectroscopic observation of the plasma from the
adjacent diagnostics room. The copper shielding is necessary to insure
that stray rf fields are not present in the diagnostics equipment. The
plasma generator‘operating parameters are listed in Table 1.

The plasma is contained in a 40.64 cm long quartzltube with an
inside diameter of 5.08 cm and a wall thickness of 1.75 ﬁm. A 1/4 inch
water cooled copper work coil surrounds the torch. The work coil ig ap-~
proximately 9 cm long with a coil pitch of approximately‘Z/B turn per cm.
The pitch of the work coil is not constant but has been varied to allow
a large enough space between the second and third turns from the bottom
to permit scanning of the entire diameter of the plasma without coil
interference. The exact geometry of the coil and torch is drawn to scale

in Figure 33 of Appendix A.
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Table 1., Plasma Generator Operating Parameters

Operating Value Maximum Rating
dc plate voltage 16,500 volts 20,000 volts
de grid voltage - 400 volts
dc screen voltage 750 volts ~ 2,500 volts
de plate current 6.2 amperes 15 amperes
de¢ grid current .14 amperes
de¢ screen current .50 amperes
peak rf plate voltage 15,900 volts
peak rf plate current 9,3 amperes
peak rf grid voltage 500 volts
peak rf grid current .28 amperes
input impedance 1,785 chms
output impedance 1,892 ohms
total plate input power 102,000 watts
plate dissipation 28,000 watts 35,000 watts
grid dissipation 14 watts 500 watts
screen dissipation 200 watts 1,750 watts
grid driving power 70 watts
plate output power 74,000 watts

plate efficiency 72,5 percené l
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A water cooled copper electrode is inserted through a size 12
rubber stopper in the bottom of the torch. The tip of the electrode is
coated with tungsten. The electrode serves as ground for the arc welder
during the starting process and also helps stabilize the vortex flow in
the tube. Figﬁre‘g shows the quartz torch with the stopper and electrode
in place. The center of the electrode is open to allow 2 regulated amount
of gas flow through the center of the tube. The primary vortex gas flow
is from the two copper tubes inserted near the perimeter of the stopper.
The ends of the copper tubes are closed off and a small hole drilled in
each provides flow tangential to the tube wall inclined 45 degrees in the
upward direction.

The gas .flow system is designed to allow any desired combination
of pure argon and aerosol to enter either the tangential flow copper tubes
or the center flow through the water cooled electrode. In practice, very
little flow could be sustained through the center electrode without plasma
extinction, thus only a small pure argon flow was used which raised the
visible plasma flame off the surface of the electrode. Samples of the
gas were taken when tungsten aerosol was injected in the plasma to deter-
mine the aerosol demsity. This was accomplished by operating the sqlenoids
that allowed the vacuum tank to draw in a measured volume of aerosol
through previously weighed filter papers. Two samplesjwere taken for
every aerosol run to insure a consistent aeroscl and to give some basis
for ascertaimning the accuracy of this measurement.

The submicron tungsten particles are injected into the plasma in an

argon aerosol using the same gas flow system. This is accomplished by
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allowing a set fraction of the pure argon to flow into a large test tube
filled with dry tungsten powder. The injected argon agitates tﬁe reser-
voir of tungsten powder on the bottom of the tube and creates an aerosol
in the upper volume of the tube, The tube is mounted vertically on a vi-
brator and the aerosol is drawn off the top of the tube and mixed with
the pure argon that bypassed the tube, The major drawback is that it
takes approximately two minutes for the aerosol density to stabilize.
Because the plasma coupling has such a large dependence on the aerosol
density, stabilization of the screen and grid currents of the power ampli-
fier tube is a good indication of aerosol density stabilization., Figure
10 is a drawing of the test tube configuration. The tube is mounted ver-

tically on a vibrator,

Diagnostics Instrumentation

The plasma diagnostics instrumentation is contained in a room
adjacent to the plasma generator with a viewing port in the wall between
the two rooms. A schematic diagram of the instrumentation and opties
used for spectroscopic observation of the plasma is given in Figure 11.

The optics are mounted on a four by six foot Ealing opﬁical table,
Magnetic optical rails and carriers are used so that the optiecal compo-
nents can be easily adjusted. A lens with a focal length of 743 mm
focuses an enlarged image of the plasmz on the entrance slit of the spec-
trometer., The scanning mirror, mounted on a custom made precision scanner,
rotates without vibration. This causes the plasma image to move across
the entrance slit of the spectrometer, A potentiometer is mounted with

amplification gears on the scanning mechanism and the variable resistance
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is calibrated to provide a spatial position trace on the visicorder out-
put. Spatial filters are used to insure that no stray reflected light
from the plasma is reflected through the viewing port. A laser is used
to locate the optical path and allow the spatial calibration of the scan-
ning mechanism. This is accomplished by noting the visicorder indication
from the scanﬁing potentiometer when the laser is at the torch radius.

The spectrometer is a McPherson Model 2051 scanning monochromator
with a one meter focal length and an f 8.7 plane diffraction grating.

The grating is 102 mm % 102 mm with 1200 lines/mm and is blazed for 5000 i.
An EMI 9558QA photomultiplier tube is mounted on the exit slit. Tﬁe en-
trance slit width and the exit slit to the photomultiplier are set at

50 p for ali continuum observations. The light entering the spectrometer
falls on only a small part of the grating and remains entirely on the
grating during the spatial scan, The photomultiplier has 1000 V applied
which is in the linear range of the tube.

The output of the photomultiplier tube and the scanning potentiom-
eter is monitored by one of three picoammeters and recorded by a visi-
corder which uses light sensitive paper and pinpoints of light to leave
a permanent trace of the picoammeter output. The response time of the
system is limited by the visicorder which has a full scale response time
of approximately .02 second,

The absolute calibration of the system is accomplished with a
tungsten strip lamp and regulated power supply traceable to the National
Bureau of Standards. The lamp is mounted as shown ianigure 11 and a re-

motely movable mirror, identical to the mirror in the plasma room, is used
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to provide a substitute optical path. Half of a quartz tube is placed in
the path of the lamp to simulate the torch, Figure 12 is a plot of the
NBS tungsten strip lamp at 35 amps vs. wavelength and Figure 13 is a plot
of the absolute sensitivity of the optical system vs., wavelength,

The coil current is measured with a Tektronix P6021 high frequency
current probe and Type 134 current probe amplifier fed into a Tektronix
Model 597 cathode ray oscilloscope. The current probe saturates at 1 amp
rms so a Tektronix Model CT-5 high frequency step~-down transformer was
mounted around the plasma work coil and was set to a 1000:1 step-down
ratio. Tektronix calibrated the transformer and current probe to an accu-
racy of three percent, A Polaroid camera attachment was used on the

cathode ray oscilloscope to record the current trace,
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CHAPTER IV
EXPERIMENTAL PROCEDURE

A typical experimental run consists of from six to ten spatial
scans of the plaéma at different power settings, The first five scans
are generally pure argon. The tungsten generator is turned on and the
flow system ig adjusted to inject tungsten aerosol into the argen for the
remaining scans. The flow is allowed to stabilize and Fhe tungsten flow
is not adjusted for the scans of plasma containing tungsten,

A new quartz torch is used for each run since the high power levels
required for sustaining a plasma with tungsten aerosol usually destroys
or permanently discolors the tube used in the previous runm.

The torch assembly is mounted inside the work coil and the gas flow
lines are attached. The entire assembly is then checked for gas flow
leaks since any air entering the torch will make plasma ignitiom virtually
impossible, New filter papers are dried out, weighed,'and inserted in
the sample holders,

The new torch is spatially calibrated by setting the scanning
monochromator to the helium-neon laser wavelength (6328 1) and opening the
exit slit. The optical path inside the diagnostics room is checked to
insure the laser beam is centered on the mirrors and lens and the path
it traces during the scan is centered in the rectangular slits of the
spatial filters, The position of the laser beam inside the quartz torch

is calibrated to the visicorder output of the rotating potentiometer that
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is gear mounted to the scanning mechanism and has a small d.c. voltage
applied to it.

The diagnostics room equipment is warmed up and the plasma genera-
tor start-up procedure is initiated. The plasma start-up check list is
given in Appeﬁdix B and takes approximatelnyorty minutes to complete.

The scanning monochromator is set to the desired continuum wavelength,
4315 § for most runs, and the slit widths checked at 50 p. The high
voltage to the photomultiplier is increased to 1000 volts.

The plasma is ignited with a d.c. power supply operating at 40
amperes. The plasma generator can only be raised to abproximately 4 kW
plate discharge power before ipgnition because the tank circuit is tuned
to the impedance of the argon plasma. The rf driver voltapge is raised
until the tube screen current is near the value for automatic over-current
trip-off. An arc is drawn from the welding rod to the grounded water
cooled center electrode. The generator power is raised after igmition,
and the center eiectrode is tﬁen ungrounded.

The plasma is run for approximately five minutes at a plate dis-
charge power level of approximately 15 kW to allow the amplifier tube to
warm up and the quartz torch wall temperature to stabilize.

The plasma is then adjusted to the desired power level and the
d.c. plate voltage and current are recorded. The desired picoammeter
scale is determined and recorded while observing the center of the plasma.
The visicorder is then turned on and the plasma scanned. The current in
the work coil is observed on the cathode ray oscilloscoée during the scan
and the current amplifier is set to scale and recorded. A Polaroid photo-

graph is taken of the sine wave with the scale factor and the run and scan
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numbers recorded on‘the back of the photograph.

The power levels required for the seeded plasma are higher than
for the pure argon plasma so the power must be raised during the switch-
over to a seeded plasma. The vacuum pump is turned on and 2 vacuum drawn
on the sample tank. The data scans of the seeded plasma are accomplished
in the same manner as those of the pure argon. The low power scans are
done first and the power raised for each run. At high power levels the
tube will discolor. The visicorder plot of each scan is checked and
asymmetry of the scan is used as an indication of tﬁbe discoloration and
thus ends the run.

Two aerosol samples are taken with the plasma running. The vacuum
of the sample tank is recorded and the solenoid valve that opens the tank
to the flow system is opened for approximately 10 seconds. The valve is
then closed and the tank vacuum recorded. A sample is then taken through
the remaining filter paper with the solencid valve opén for approximately
twenty seconds.

The filtgr papers are removed and weighed and the aerosol density
is calculated from the weight change of the filter papers and the volume
of argon drawn into the sample tank.

The visicorder output is cut up into the individual scans and each
scan is checked for symmetry. The run and scan number are recorded on
the visicorder output. The photographs of the current of the work coil
are measured and, based on the amplifier scale, the peak to peak and root
mean square currents are calculated and recorded.

The visicerder output with the recorded picoammeter scales serve
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as the raw data for the spatially observed intensity profile used in the
data analysis section that follows. The calibration of the observed in-
tensity is accomplished with a NBS standard tungsten strip lamp as de-

scribed in Chapter III. A typical visicorder trace is shown in Chapter

V.
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CHAPTER V

DATA ANALYSIS

Introduction

There is a wide range of diagnostic methods available to the
experimenter for measuring the electron temperature_of a plasma. These
methods fall chiefly into three categories; probes, and the active and
passive uses of electromagnetic radiation. Probes, such as those de-
veloped by Tonks and Langmuir,so are historically significant but not
practical for high density plasmas due to deterioration of the probes
and perturbations the probe may introduce., Thompson scattering of pho-
tons by electrons yields information on electron temperature and density
and ion temperature., The cross section for Thompson scattering is so
small that lasers with powers of hundreds of megawatts are required to
overcome the background due to the bremsstrahlung radiation. Passive
methods that involve observation of the emitted radiation include tech-
niques utilizing x-rays, microwaves, and radiation in the visible, infra-
red, and ultraviolet range. Relative intensities of spectral lines, line
shapes, or the intensity of continuum radiation may be employed. Meald
and Whart:on51 give a good general tabulation of useful diagnostic tech-
niques and the temperature and density ranges over which the methods may
be utilized.

The electron temperatures (on the order of 6000-9000°K) and number
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densities (1021-1022 m-3) of the argon plasma under consideration favor
spectroscopic techniques in the visible range. Equipment requirements
are minimized in the visible range and the emission intensity is high.
The temperature dependence of the absolute continuum emission was chosen
as the basis for electron temperature measurement in favor of several
other available techniques. The chief advantage of this method is the
high degree of dependence the continuum emission coefficient has on teﬁ-
perature in this range, thus minimizing the resulting experimental error
in temperature determination., This technique does require an absolute
calibration of the system.

Methods involving the relative intensities of spectral lines require
only relative calibrations of the optical system but errors are introduced
in the form of experimentally determined atomic transition probabilities
and possible self absorption of lines. These transition probabilities are

2
52,53,54 but the estimated error in some argon lines is

readily available,
as high as 30%. This technique also requires that two or more spectral
lines at different wavelengths be observed simultaneously while spatially
scanning the plasma, A Boltzmann atomic plot of the natural log of the
relative intensities of many lines versus the upper level electron energy
associated with the transition that leads to each line reduces some of the
errors caused by the uncertainties in transition probabilities. The slope
of a straight line through the data points is a function of temperature.
The accuracy of this method increases with additional lines and with lines

spread over a wide range of electron upper level energies. Unfortunately,

the slope of the line is not highly temperature dependent and, for argon
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lines in the visible range a wide range in upper level energies requires
a wide range in the observed spectrum, A Boltzmann plot was made from
observations at the center of the plasma using lines between 4000 L and
8000 L with poor results.

The measurement of absoclute line intensities also introduces experi-
mental problems. Either the line shape must be determined at many spatial
points with a high resolution spectrometer, or a slit width that introduces
the entire line radiation must be determined and the continuum background
taken into account. Self absorption at the line center ﬁay also be a
problem,

The continuum measurements were taken at the 4315 i wavelength and
checked by comparison with three runs at 5000 L. A photoelectric trace
of the argon spectrum at an average temperature of 7500°K from 4200 4 to
4400 § with a tungsten seed density of 18 x 10-6 gmfcc is given in Figure
14 and shows the continuum at 4315 & to be 15 i from any.argon or tungsten

spectral lines,

Analvsis Equations

There are two independent but experimentally inseparable contribu-
tions to thelcontinuum radiation emitted from a plasma in local thermo-
dynamic equilibrium (LTE). Bremsstrahlung (radiation from free-free
transitions) is the result of the Coulomb interaction of unbound electrons
with positive ifons., The kinetic energy of the electrons is transformed
into radiation as the electrons are accelerated by the electric and mag-
netic fields present in the plasma. Free-bound (recombination) radiation

is due to the transition of free electrons into bound states; the reverse
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of photoionization.

Kramers55 first calculated the emission coefficlient due to Brems-
strahlung for a Maxwellian electron velocity distribution and a plasma
containing only ions of equal charge. The emission coefficient expressed

as energy radiated per unit frequency is:

ff

lém e6 z2 NN G
e — e 1
v 3c (6rmi)® ¢

£ff
exp {- %2 (59)

with the quantities defined as follows:

electronic charge

e

z = level of ionization

Ne = pumber density of electrons
Ni = pumber density of singly ionized atoms
fo = free-free Gaunt factor

¢ = speed of light

m = rest mass of electron
k = Boltzmann constant

T = electron temperature

h = Planck's constant

Y frequency

The Gaunt factor corrects the semi-classical photolonization cross
section for hydrogen like systems to the exact values calculated through
wave mechanics. The Gaunt factors, averaged over the Maxwellian electron

velocity distribution, have been calculated by Karzas and Latter.56 The

values of the free-free Gaunt factors are of order 1 and are usually taken
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to be unity at the lower end of the visible spectrum, since the free-free
contribution to the cﬁntinuum is small compared to the free~bound continuum.
The free-bound emission coefficient for a Maxwellian electron ve-
locity distribution involves a summation of emission coefficients over all
possible energy states to which a free electron may undergo tramsition.
Uns'c')ld57 demonstrated that the summation could be replaced by an integral
for frequencies that involved transitions to sufficiently dense levels.
Uns6ld defines this cut-off frequency vg in terms of the energy difference
between the ionization potential and the bound state for which higher
levels are spaced closely enough to allow integration. The emission co-

efficient for a one-electron system at frequencies below vg is:

2 6
hv

v £ vg e, = Té {1 - exp ( kT)} {60)

3c (ﬁnmk)ﬁ

. 8 . s L
Biberman et al.5 »39 corrected the emission coefficient for other hydrogen-

like gases by introducing a correction factor E(T,v) or E(T,A).

16m e6 22 N N g
b
V=W € =

g v 3¢ (6nmk)i Té u

z,1 {1 - exp (- %%)' £ (T,v) (61)

where g, 1 is the statistical weight of the ground state of the singly
H
ionized atom and u, is the partition function of the singly ionized atom

defined by:

T |
6, M=) 5, - (62)
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Bauder60 used a cut-off frequency of vg = 92,5 x 1()714 sec_l, corres-

ponding to a wavelength of X = 3160 X in his work on high density d.c.

61,62 has calculated £ factors for argon which are

plasma arcs. Schliiter
nearly temperature independent below 14,000°K.

The total continuum emission coefficient is theh the sum of efb and
eff. Taking the free-free Gaunt factor to be unity and expressing the
emission coefficient as energy radiated per unit wavelength by multiplying

equations (59} and (61) by c/'h2 we have:

6 2

16’” e z NENi gZ 1 -y =¥
& T L2 £ 2,2 [ ui' (1 - exp ™) EQ.T) + exp ] (63)
3¢ (6mmk)® TE ) z
where
= v _he
¥ = WT T kT

Evaluating the constants in equation (63) and using the data from
Drawin and Felenbok34 for the statistical weight (gz 1= 6) and partition

function (uz(T) = 5.519) for argon over the temperature range of interest,

watts

equation (63) becomes {for ¢. in —_—)
ster. cm
-19 "Ny reco T
A>3160 8 e =1.65 x 1077 &1 [—59&—2 (1 -e 4 e‘“] (64)
Y 2 r 5.519
AT
where
N, = electron number density, em™3
N, = singly ionized number density, em™3
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T = electron temperature, °K

I

A = continuum wavelength, A

The number density of the electrons is equal to tﬁat of the singly
ionized atoms below approximately 20,000°K and can be calculated from the
Saha relation, equation {(53) in Chapter II.

The neutral particle pumber density can be approximated from the

ideal gas law for slightly ionized argon by

L RT _ (65)

where R is the universal gas constant and P is the pressure which is very
nearly 1 atmosphere pressure in the plasma.

The number densities for argon neutrals, singly ionized atoms, and
electrons at one atmosphere are given in Figure 15 as a function of tem-
perature as calculated from equations {53) and (65). The continuum emis-
sion coefficient as a function of temperature given by equation {64) for
argon at 4300 X and one atmosphere is plotted in Figure 16,

The assumption of local thermodynamic equilibrium (LTE) requires
that the population densities of the electrons be determined exclusively
by particle collisions and that all species have a Maxwellian velocity dis-
tribution at the same temperature. For bound levels, the distributions are
given by the Boltzmann and Saha equations. Griem63 presents a criterion
for LTE based on a collisional rate which is ten times larger than the
radiative transition rate. If we apply this validity criterion estimate to
the experimental conditions present in this work, we find that electrom

densities of about 5 x 1022 m-3 are required which makes the LTE assumption
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suspect below about 11,000°K. Shumaker and Popenoe64 used a wall stabil-

ized arc for studies of equilibrium in argon and concluded that departures

from LTE occur at electron densities below 5 x 1022 m-3. Their data in-

cluded no correction for self-absorptiom of the lines studied. Olsen65

used an argon arc burning freely between cooled metal electrodes to com-
pare temperatures determined from measured emission coefficients of three
species of plasma radiation and concluded that his atmospheric pressure
plasma was in LTE at a temperature of 10,000°K. He states that "Discrep-
ancies between temperatures determined from atom an& ion lime intensities

have been shown to have been caused by self-absorption of the atom line

in the outer layers of the plasma.”

Work on rf argon plasmas by Scholz and Anderson5 indicates that an
rf plasma may be in LTE at much lower number densities tham a d.c. arc
because of the larger plasma radil and lower axial and radial temperature
gradients present, Shumaker and Popenoe64 discusse& the relevance of
plasma diameter and temperature gradients in their report on d.e. arc
studies.

By comparing an arc with a black body in which complete LTE
exists one can recognize three essential differences which may
cause departures from equilibrium. First, in the arc much of
the radiation escapes so that LTE will be achieved only if radi-
ative depopulation rates are negligible compared to rates of
collisional population and depopulation. Second, in the arc
steep temperature and number density gradients exist which may
generate diffusionmal fluxes of such magnitude that collisional
(and radiative) processes are unable to maintain equilibrium
distributions. And third, since electrons absorb energy from an
electric field much more rapidly than ions do the kinetic tem-
perature of the electron gas will be higher than that of the
heavy particle gas which obtains its energy then mainly by col-
lisions with the electrons. 8Since collisional processes will
be dominated by electron collisions it turns out that all of
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these effects should decrease rapidly in importance with
increasing electron density . . .. The importance of the
gsecond effect should also depend upon arc channel diameter
and radial position in the arc.

Scholz and Anderson5 investigated LTE in an rf argon plasma operat-
ing at 4.2 MHZ at pressures of 0.01, 0.1, 0.5, and 1.0 atmosphere. They
used four emission lines and the continuum centered at three different
wavelengths to show that the central core of the rf argon plasma was in
LTE at 1.0 and 0.5 atm and very nearly so at 0.1 atm. They state that
this

. « . equilibrium is due in part to the existence of low (i.e.
VT| < 530°K/cm) axial and radial temperature gradients. At
these pressures the plasma is in am apparent state of LTE and
the thermal limit extends down to the ground state. The LTE

electron number density criterion given by e%uation (1) [Griem]
appears to be conservative for this plasma.1 :

The problem of relating the radial emission coefficient to the ob-
served intensity profile is simply a geometric ome for optically thin
plasmas and the standard Abel inversion technique may be used. The prob-
lem is more difficult when reabsorption inside the plasma cannot be ne-
glected. Griem60 suggested a self-consistent iterative procedure for ob-
taining emission coefficients in the case of moderate optical depths.

The absorption coefficient is defined by:

co,m) = £81 (66)

where B(h,T) is the blackbody radiation.
The plasma is assumed axially symmetric and divided into N zones

of radii RN, 2R/N, . . ., and R as indicated in Figure 17. The tempera-
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ture, emission coefficient, and absorption coefficient are considered
constant in a given zone., The reduction in intensity of radiation I0
after passing through a zone of constant K{A,T)and distance x is given

by:

I=1I e (67)

If that zone is also emitting radiation with the same emission coefficient

throughout that zone, the observed intensity will be:

I=1 ¥4 Ix e e-w(x-g) dg - (68)
¢ QO
or
1= 10 e-Kx + % (1 - e'Kx] ' (69)

The intensity of the radiation observed at a given spatial position,
Yo a8 shown in Figure 17, is the sum of the radiation emitted from each
zone minus the radiation attenuated by the zones between each emitting
zone and the surface,

A computer program was writtenm to relate the emission coefficient,
absorption coefficient, and temperature of each zone to the cobserved in-

tensity of the radiation emitted from the surface of the plasma.

Computer Program — MAD

The computer program, MAD (Modified Abel Diagnostic code), utilizes
the spatially observed surface radiation intensity as raw data fed in at N

discrete points according to Figure 17. The program calculates the radi-
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ally dependent temperature, emission coefficient, and absorption coeffi-
cient for a plasma that is not optically thin. A typical visicorder
trace, as shown in Figure 18, is reduced to give values of the observed
radiation in watts/sec m3 based on the output current of the photomulti-
plier tube and the calibrated sensitivity of the system. The radius of
the plasma is found from the radiation intensity trace and the spatial
position trace. The radius is assumed to be that position where the in-
tensity drops to zero.

The data fed in are first curve fitted with a third order spline
fit subroutine and interpolated to give observed intensity values for N
zones. The program then calculates values of x(n,i), which is the thick-
ness of zone 1 when observed at chordal position Y, shown in Figure 17.

This distance is

.02 & 2
o x[(1-5) (DT Y sen oo
i=i+1

During the first iteration, the emission coefficients are calcu-
lated for each zone from the observed intensity I(yn) and the values of
x(n,i), assuming the plasma to be optically thin, i.e., the absorption
coefficient K is set equal to zerc for all zones. Starting from zone one
and working toward the center, the emission coefficient of each zone is
calculated using the emission coefficients of previously calculated zones
from:

n
I6) =2 ) o) x(n,1) (71)

i=1
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or
n-1
. . 1
e(n) = [I(}’n) -2 z 6(1) X(D,l)] Zx(n,n) (72)
i=1
where e(i) for i < n have been calculated previously.
The temperature and number density for each zone can be calculated
from the emission coefficient and equations (53), (64), and (65). Values
for the number density are interpolated from data given by Olsen's GASCOMP

a'I'S/4 epr/T dependence between values 1000°K apart.

program using an N =
The a and b coefficients are calculated for each 1000°K interval and the
error is less than one percent over the temperature range of 4000-14,000°K.
The correct temperature and number density for a given emission coeffici-
ent are then arrived at by binary search iterative procedure. The first
approximation of the absorption coefficient is calculated by dividing the
emission coefficient by the blackbody radiation at the temperature of the
given zone as indicated by equation (66).

After the first iteration, a new set of emission ccefficients is
calculated based on the observed intensity data and the first approxima-

tion to the absorption coefficients. Equation (71} is modified to include

the absorption coefficients:

n i-1
16 = ) {FH 1 - e k@ x@n) {oe (j;-rc ) x@,9) 7
n n

+ exp (z -K(3) x(n,i) + Z -k (3) x(n,j))}}

=1 j=i+l
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This calculation is best accomplished on the computer by defining
a set of optical arrays based on equations (67) and (69). Let e(i)A(n,i)
represent the emission from a zone of length %(n,i) and constant emission

coefficient ¢(i) and absorption coefficient K(i). From equation {69)
A1) = gy (- exp (K (D) x(n,i))] (74)
Defining B(n,i) as:
B(n,i) = K (1) x(n,i) (75)

then exp B(n,i) represents the attenuation of radiant energy passing
through a zone of length x(n,i) according to equation (67).

Arrays C(n,i) and D(n,i) are defined in terms of sums of B(n,1i)
such that exp C(n,i) represents the total attenuating power of all of the
zones between the zone emitting radiation e(i)A(n,i) and the surface for
zones on‘the near side of the plasma, and exp D(n,i) represents the equiv-

alent for zones on the far side of the plasma:

i-1
G(n,i) = Z B(I‘l,j) (76)
=1
n e}
D(r,i) = ) B, + ) Bla,d) an

j=1 j=i+l
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Now the radiation emitted from zome i and along chordal position

1 =¢()A(,1) (78)
The radiation from this zone reaching the surface is then
I =¢(i)A(n,i) exp (C(n,1i)) €4°))
for zomes on the near side of the plasma and
I = ¢(i)A(n,i) exp (D(n,i)) (80)

for zones on the far side of the plasma. Equation (73) then reduces to:

Il
IG,) = ) e(DAM,D) lexp (C(,1) + exp (Dn,1))] (81)

i=1

The emission coefficients can then be calculated starting from zone 1 and

proceeding inward by:

n-1
16, - ). eAn,D) lexp €@, 1)) + exp O@,i))]
i=1

e(l’l) = (82)
A(n,n) l[exp (C(n,n)) + exp (D(n,n))]

whaere e¢(i) for i < n have been calculated previously,.
These new emission coefficients are used to calculate new tempera-

tures and absorption coefficients. The iteration terminates when the
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changes in emission coefficients, absorption coefficients, and temperatures
for all zones are less than one percent of the values in the previous
iteration.

This analysis provides a self-consistent radial distribution of
temperature, emission coefficient, and absorption coefficient for‘the dis-
tribution of the observed intensity for moderately self-absorbing plasmas.

A listing of the program is given in Appendix C.

Error Analysis

Chordal Average Temperature

The éxperimental errors associated with the tempefature measurements
are small compared with the experimental magnetic field intensity measure-
ments because of the high temperature dependence of the emission coeffi-
cient. If we define a chordal average temperature as the equally weighted
sum of the temperature of each zone divided by the number of zones, and the
cliordal average emission coefficient as the value of the emission coeffi-
cient determined by that temperature, the chordal averége emission coef-
ficient multiplied by the plasma diameter will yield the value of the
emitted intensity, I(yc), along a chord through the center of the plasma.

It is estimated that the photoelectric trace of the observed inten-
sity can be read within 107 and the sensitivity of the system as shown in
Figure 13 is known within 15% giving a total uncertainty in the observed
intensity of 25%. The absorption coefficient is neglected in estimating
the error in measured chordal average temperatures since the theory and
experiment show the plasma is optically thin. The uncertainty in observed

intensity results in an uncertainty in the average emission coefficient
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of the same value since

€ = I(yc)/R (83)
80
Ae = Z_ AL = AL /R (84)
€ ZIC c c
and
_ Al A1
Ae _ ¢ __¢ (85)

The uncertainty in the chordal average temperature can be esti-

mated from the observed intensity error by

2T = T —

AT >z A€ 2z ) &Ic ‘ 5

T T T TI (86)
a4

The wvalues of g and %% as functions of temperature can be obtained

from equation (64) or estimated from Figure 16. Over the temperature
range of 7000°K < T < 9500°K, a 25% uncertainty in observed intensity re-
sults in a chordal average temperature uncertainty of less than 2%. The
uncertainty in experimentally measured chordal average temperatures is
much less than that of the experimentally measured magnetic field inten-
sity. Thus, only the error bars associated with the magnetic field inten-
sity measurements are shown in the results section.

Magnetic Field Intensity

The Tektronix high frequency current probe, amplifier, and step

down transformer are calibrated to within 3%. It is estimated that the
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magnetic field intensity can be calculated from the coil current to within
an accuracy of 2% based on the experimental measurements reported in Ap-
pendix A. The current recorded from the photographs of the trace on the
oscilloscope is estimated to be correct within 10%, giving a total uncer-
tainty in the reported magnetic field intensity of 15%.

Tungsten Aerosol Density

The tungsten aerosol density was measured twice during each experi-
mental run and the uncertainty in the reported density is estimated to be

20%, based on the average discrepancies in measured values.
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CHAPTER VI

RESULTS

Introduction

A total of 59 experimental runs resulting in temperature profiles
were made. Approximately 50 more runs were made that did not yield re-
sults due to equipment failure. The failure was most oftem in the plasma
generating equipment.

The first 27 runs were made without measurement of the coil current
in order to develop a degree of confidence in the plasma generator and the
diagnostics instrumentation. Three runs were made using the continuum at
5000 } and at 4315 & to ensure that the resulting temperature profiles
were not dependent on the continuum wavelength chosen. The plasma spec-
trum was recorded from 3500-8000 A and analyzed to ensure that no unknown
contaminants were in the plasma. Twelve of these first 27 runs included
various concentrations of tungsten aerosols ranging in number density
ratios NW/NAr from 2,5 x 10_3 to 3.7 x 10-2 to ensure that the effect of
tungsten could be measured and to gain experience in operating the plasma
generator with a seeded plasma. High speed, 16 mm motion pictures of the
plasma were made at 1000 frames/sec to check for imstabilities in the
plasma that might not be observable to the naked eye. A small pulsation
of the plasma at a frequency of 60 Hz could be detected which caused a

variation in the plasma radius of about 10%. This resulted from the 60 Hz
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ripple in the coil current from the rectifier cifcuit.

There weré 32 runs made with temperature profiles recorded at
various power levels. The coil current was measured along with the plate
dissipation power. Eleven of these runs were made with tungstenm to argom

number density ratios of 4.3 x 10-3, 6.1 x 10-3, and 3.6 x 10-2.

Experimental Results

Argon

The observed intensity for four representative runs at magnetic
field intensities of 33.1, 46.0, 55.2, and 77.2 amp-turns/cm are illus-
trated in Figure 19. Figure 20 is a plot of the resulting radial distri-
butions of the calculated emission coefficients. The absorption coeffi-
cients were also caleculated in the analysis and ranged from about 10-6
em™ ! for the low power case to 2 x 10> em™! for the highest power case,
indicating that the plasma was optically thin.

The temperature profiles that result from the radial emissién co-
efficients are presented in Figure 21, While the observed intensity
ranged over an order of magnitude for the various power levels, the re-
sulting temperature profiles varied only about 10% from the lowest power
case to the highest., This is due to the very high temperature dependence

of the emission coefficient.

The four temperature profiles presented in Figure 21 are compared
with the theoretical analyses in Figure 22. The solid line indicates
the experimental results; the dotted and dashed lines represent the nu-
merical results described in Chapter II. The plasma radius was reduced

in one case to the experimentally observed radius and the thermal con-
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ductivity increased as explained later. The off-center pesk temperature
of the numerical analysis is much more promounced than the results of the
experiment. The off-center maximm of the temperature profile is a result
of the skin heating by the electromagnetic field and radiation cooling of
the plasma. When radiation is neglected, the numerical analysis yields a
temperature profile with the maximum temperature occurring at the center
of the plasma. The experimental results also have an'off-ceqter tempera-
ture peak but the difference between the center temperature and the peak
temperature is much less than predicted by theory. This is in keeping
with the results of other experimenters as shown in Chapter I. The most
probable reason for this is the complex turbulent flow pattern present

in the experimental plasma that is not_accounted for in the theoretical
analysis. Ihis turbulent mixing flow will tend to flatten out the tem-
perature profile. Neglecting axial convection in the numerical analyses
may also account for the difference since the axial temperature gradient
will be highest at the radial position where the peak temperature occurs,
tending to flatten the temperature profile. The magnetic field intensity
is increasing at the axial point, where the plasma was cbserved, as shown
in Figure 33 of Appendix A, and the peak temperature increases with in-
creasing magnetic field intensity. An approximate analysis was made with
an assumed axial temperature gradient calculated from the derivative of the
applied magnetic field intensity and the change in the radially dependent
temperature with applied magnetic field intensity as predicted by the nu-
merical analysis. This analysis shows that the correction term is an corder

of magnitude lower than the radiation term. This is not in agreement with



77

the theoretical predictions of Miller and Ayen.21 Their two-dimensional
analysis of temperature profiles in a torch with an assumed flat axial
flow shows a definite flattening of the temperature profiles at the begin-
ning of the energy addition region and a gradual increasing of the off-
center maximum temperature at increasing axial positious.

The effect of the turbulence is to increase the effective thermal
conductivity., The mumerical analysis shows a marked -decrease in magnetic
field intensity near the tube wall while it appears that the vortex flow
decreases the radius of the plasma, thus delaying the drop in magnetic
field values. The numerical analysis was run with the thermal conductivity
values doubled and the radius reduced to match the exﬁerimentally observed
radius. The results are shown in Figure 22. The profile shapes are in
better agreement with the experimentally observed profiles, indicating
that the turbulent flow may indeed cause a significant increase in the
effective thermal conductivity due toc mass convection.

Additional insights can be gained if the chordal average temperatures
are plotted as fﬁnctions of applied magnetic field strengths as shown in
Figure 23. The chordal average of the numerical temperature profiles re-
mains in good agreement with the experimental chordal average throughout
most of the range of magnetic field intensities. The-qncertainty in the
numerical solution due to the uncertainty in the electrical conductivity
is reflected by the cross hatching.

The analytical approximation of Roninskii et al.6 predicts tempera-
tures several thousand degrees higher than does the numerical analysis.

This is due to the radiation term which is neglected. At lower tempera-
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tures, radiation plays a less important role, and the two techniques con-
vaerge., If the radiation term is set equal to zero in the numerical tech-
nique, the two solutions are nearly identical., Imn this case the maximum
temperature occurs in the center for both techniques. |

Figure 24 is a plot of the total linear power input and the power
radiated as a function of magnetic field intensity predicted by the nu-
merical analysis. The radiated power,represents 50% of the total power
input for a magnetic field strength of 75 amp-turns/cm and drops to 35%
for a.field-strength of 30 am-turns/cm.

The numerical analysis predicts that a plasma can;be sustained at
magnetic field strengths as low as 15 amp-turns/cm, but experimentally the
limit was determined to be about 30 amp—turns/cm. This can be seen in Fig-
ure 23, where the experimental points tend to diverge from theory at about
30 amp-turns/cm. This can also be attributed to flow. The plasma is
literally "blown out' at low power levels by the flowﬂ

Argon Seeded with Tungsten

The argon plasma was seeded with tungsten at number density ratios
of 4.3 x 10’3, 6.1 x 10-3, and 3.6 x 10-2. The greatest effect on the
temperature profiles was with an NW/NAI of 6.1 x 10-3.' This is most likely
beéause the collision cross section of tungsten can no longer be neglected
at the higher number densities of tungsten. Temperature profiles for
three different magnetic field strengths and a tungsten number density
ratio of 6,1 x 10°3 are shown in Figure 25. The temperatures are reduced

approximately 1000°K below the pure argon case. Figure 26 is a plot of

these same three profiles compared with the results of the numerical



80

500 T T | | L i i

400 -

300 - -
o~
E - Total Power .
E, Input EL—
=
S~
Ay

200 [

100 1 1 1

30 40
H (amp turns/cm)

Figure 24. Numerical Analysis Predictions of Total Linear Power

Input and Power Radiated



| 1 L |
~ H (amp turns/cm) ‘ T
9 -
e 73.3 N
o 55.1 = 6.1x 107
0 46.0 Ax
s 33.1 oo
o9 LY -
8le0e0ces0ees? '00..
' L
000000 ®o,
0,0000000 oo
~ E"o © OOOO e .. .
b (] <
& O DDUDDDDDDDGD Co
o O O0g o}
(=} ¢ ca
7F O 0 -
= DDDDD
(]
E D
LI 0 .
o
H
@
" i
= No plasma could be
sustained
5 |- -
4 { | | ]
0.0 0.5 1.0 1.5 2.0
Radius (cm)
Figure 25, Experimental Temperature Profiles for a Tungsten Seeded

Argon Plasma at Four Representative Magnetic Field
Intensities

81



Temperature (103 °K)

Temperature (103 °K)

82

T | ] T ! T T |
10 |- ~ 10} -
H = 46,0 amp turns/cm H = 73.3 amp turns/cm
9r - ~ 9 .
= -
o / \
8~ . 2 8&_—/\ -
@
7 o - g 7 e —
- — +
S \ &
¥
o
6 = i % 6,— e
(3
&
5 - 5k -
4 1 i l l 4 i I 1 !
0.0 0.5 1.0 1.5 2.0 0.0 0,5 1.0 1.5 2.0
Radius (cm) Radius (cm)
T T T Y
H = 33.1 amp turns/cm
10 H = 55,1 amp turns/cm No plasma could be sustained
experimentally or numeri-
9 — cally.
8 . \ -
—— Experimental
7 — — - — Numerical
6 |- - N -
- =6.1x 107
Ax
5 .
| 1 |

4 1
0.0 0.5 1.0 1.5 2.0

Radius (cm)

Figure 26, Compafison of Experimental and Theoretical Temperature
Profiles for a Tungsten Seeded Argon Plasma at Four
Representative Magnetic Field Intensities



83

analysis. The transport properties were altered in the numerical analysis
as discussed in Chapter II. Figure 27 is a plot 9f the chordal average
temperatures of the plasma as a function of magnetic fieid strength for
the various tungsten partial pressures, The temperatures decrease with
the addition of seed as predicted by the theoretical analysis with gener-
ally good agreement until the seed reaches an Nw/NAr of 3,6 x 10-2. The
experimental temperatures begin to rise for higher seed concentrations
while the temperature calculated from the theory continues to decrease.

This is because the theory neglects electron collisions with tungsten in

the calculation of electrical conductivity,

Parametric Study of Numerical Analysis

The uncertainties in the transport properties of both seeded and
unseeded argon and the experimental parameters that can be varied make it
worthwhile to examine the effect the data input to the numerical analysis
has on the predicted temperature profiles. Figures 28, 29, 30, 31, and
32 each shows the temperature profiles at four different magnetic field
intensities with the electrical conductivity, thermal conductivity, fre- .
quency, radius, and radial mass flow rate varied over the indicated ranges,

The effect of the electrical conductivity can be seen in Figure 28,
The values were varied by translating the empirical curve with respect to
temperature by 1000°K to either side of the values norﬁally used in the
analysis. This effectively bounds the available data, fhe electrical
conductivity terms enter the governing equations through both the energy
balance equation and the equation for the induced electric field. The

induced electric field is lowered for higher values of electrical conduc-
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tivity. This reduces the power input term for the energy balance equa-

tion, OE since the increase in ¢ is more than offset by the decrease

2
g ?
in Ee. The reduction in the power input term causes a uﬁiform reduction

in temperature, though the temperature values do not seem to be very
sensitive to variations in the electrical conductivity vélues.

The temperature profiles are mot very sensitive to the values
chosen for the thermal conductivity either, Figure 29 shows the results
of varying the values of A by 25%. An increase in thermal conductivity

'causes the temperature profile to flatten as might be expected, but does
not lower the average temperature in spite of the fact that more energy
is transferred through the torch wall. This is most likely because the
reduction in the maximum hot spot temperature lowers the total radiated
energy more than the temperature increase in the central region increases
it,

The frequency of the applied electromagnetic field-effects its pene-
trating ability. At higher frequencies, the power input is over a nar-
rower band near the tube wall, resulting in a lower center region temper-
ature but a higher temperature near the wall, This effect can be seen
in Figure 30.

The results of variations in the plasma radius are not so easy to
predict; An increase in radius requires a larger net power 1lnput to keep
the same values of the applied magnetic field intensity at the plasma
radius, The surface area for heat transfer to the wall also increases.

The hot spot temperature remains approximately the same as seen in Figure

31, though the central temperatures drop with increasing radius since the
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induced electric field decreases as the penetration distance increases.

A study of the effect of a radial mass flow was made since there
is some experimental evidence22 that indicétes such é flow may exist.
The results are shown in Figure 32, The hot spot temperature 1s not
affected in magnitude or position. The center region temperatures are
increased with an inward flow toward a sink in the center.

The most surprising result of these studies is the very low sen-
sitivity of the temperature profiles to any of the inputs, including

the magnetic field intensity.
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CHAPTER VII
CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The one-dimensional system of equations made up of the energy
balance equa;ion, Maxwell's equations, and Chm's law are adequate to
quantitatively describe the chordal average temperature inside an rf
plasma over a wide range of magnetic flux intensities but do not describe
the profile shape as well as might be desired. This is a possible result
of the complex turbulent flow patterms inside the torch which are not ac-
counted for in the analysis. There does not appear to be any reasonable
solution at present to this problem, though experimental and theoretical
temperature profiles would most certainly be in bette: agreement for ex-
perimental plasmas designed to minimize this effect. Aﬁ effort was made
to simulaete the effects of turbulence by increasing the thermal conduc-
tivity values and using the experimentally observed.radius in place of
the torch radius in the numerical analysis. Agreement with experimentally
observed temperature profiles was improved.

The neglect of the radiation term in the energf balance equation
is not justified. The results of the numerical treatment and experiment
show that the temperatures encountered at the magnetic flux intensities
-necessary to sustain a plasma are too high to neglect the effect of radia-
tion. The closed-form analytical approximations that neglect radiation

do yleld interesting insights into the problem, most notably with regard
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to the degree of coupling between the electrical and thermal conductivi-
ties and the resulting temperature predictions, but do not accurately
predict the maximum temperatures encountered or the temperature profiles.
The numerical solutions are not highly sensitive to any of the
experimentally controllable inputs or to the electrical or thermal con-
ductivity values chosen, This lack of sensitivity was experimentally ob-
served with respect to the magnetic flux intensity and conductivity values
but equipment limitations prevented variations of the torch radius or rf
driving frequency. The addition of tungsten seed significantly increased
the electrical and thermal conductivities of the argon but lowered the
temperatures of the plasma, as predicted by theory, bf only about 1000°K

for corresponding magnetic field intensities,

Recommendations

An experimental arrangement that minimizes the effect of turbulent
flow would form a better basis for comparison with theory. Extending the
experimental measurements to twe dimensions would be a va1uab1e addition
to those numerical techniques which attempt to take into account the
axial variation of the energy addition reglon. Utilizing gases with
marked differences in transport properties would help establish the
ability of the theory to handle the problem. A more productive effort
might be made in the directiom of simplifying the calculations necessary
to determine the chordal average temperatures resulting from the many
variables open to the experimenter, A modification of the existing closed

form solutions that takes into account radiation would be a wvaluable ad-
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dition., A detailed comparison with existing numerical solutions over

a wide range of cases would lend credence to the results of this modified

closed form solution.



95

APPENDIX A
COIL AND MAGNETIC FLUX GEOMETRY

The magnetic field intensity inside the work coil is a function of
the work coil geometry and is proportional to the current in the work
coil, Figure 33 is a full scale drawing of a cross section of the work
coil and torch with the plane of observation noted.

The magnetic field intensity at any point z along the axis can be
calculated from the work ceoil current, I, by

2
H=z—-££—§ (87)
1 2(a” + xi)
where a is the work coil radius and X, is the axial distance from poinﬁ z

to each coil position, as noted in Figure 33.

Defining
2
¥(z) = L —5— (88)
i Z(a2 + xi) :
Then
H(z) = 1 ¥(z) (89)

The calculated values of v(z) are shown in Figure 33. These values
were experimentally verified by passing a known d.c. current through the

coil and measuring the magnetic fieldintensity inside the coil with a
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Bell Model 640 Gaussmeter, Figure 34 1s a plot of experimentally meas-
ured points taken at the observation plane used for the plasma tempera-
ture profiles and a line corresponding to the theoretically calculated

value of Y = ,52 at that point., The agreement appears excellent.
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PLASMA START-UP CHECK LIST

Pre-Start

Start

Pad Input Switch

Arc Welder

Main Water

Capacitor Drain Switch
New Filter Papers
Spectrometer

Torch Alignment

Argon Supply

Bypass Flow

Torch Leaks

APPENDIX B

Visicorder Spatial Aligmment

Spectrometer

‘Spatial Scan

Ground Switch

Capacitor Drain Switch
Fad Input Switch

Arc Welding Rod

Coil Céoling Water

Interlock System

off.
of £
off
dowm
check
6328 X
cheék
check
clean
check
record
4315 &
centered

on

up

clear
on

all off (left)

99
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Pad Inpﬁt Starter on

Rectifier Switches on (right to left)
Plate Voltage Delay on

Screen Voltage Control full c.c.w.

Grid Voltage Control . full c,c.w.

Grid and Screen Power Supply Circuit on

Breakers

RF Driver full c.c.w.
Filament Voltage full c.c.w.

Tube Blower Circuit Breaker on

Aux. Blowers and d.c, Arc Circuit Breakers on

Filament Circuit Breaker on
1 kW Amp. Circuit Breaker on
RF Driver--four switches on- ; g
Grid Voltage 200V
Screen Voltage 200 v
Filament Veoltage 2v
Plate Voltage lower until zero light on
5 min Plate High Voltage on
Plate Voltage 2500 Vv
(Grid Voltage 300V
Screan Voltage 300 v
| Filament Voltage 3.5v
5 min [Grid Voltage 400 v
Screen Voltage 400 v

;j{ Filament Voltage 5V



IQ\ Grid Voltage 500 v
5 min
Screen Voltage 700 V
Filament Voltage 7V
Cascade Interlock Lights check on
Ready Light check on
5 minM[Filament Voltage 9.7 v
Switching Network
Turnoff on (right)
Grid on (right)
Plate on (right)
Screen on {right)
RF Driver c.,w. until screen current noted,

Plate Voltage

RF Driver c,w, until screen current noted,

Plate Voltage

RF Driver c.w. until screen current noted,

Argon Pressure 40 psi

Argon Bypass Flow Rate 3n

Torch Blowers on

Arc Welder on

RF Driver c.w, until screen current 150 ma
Ignition

Draw Arc with Welding Rod to
Water Cooled Center Electrode

then full c¢c.e.w.

- 5000 V

then full c.c.w.

7500 v

then full c.c.w,
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Immediately after Ignition

102

Arc Welder of f
RF Driver ¢.w. until screen current 100 ma
Ground Switch of £
Duct in Place
Warm up Torch Slowly
Normal Shut Down
Simultaneously
Switching Network Turnoff offr(left)
RF Driver full c.c.w.
Immediately

Switching Network Screen

Plate
Grid
Filament

Plate Voltage

Filament

Screen Vbitage

Grid Voltage

Plate High Voltage

Delay

Rectifier Switches

Pad Input Starter

Argon Flow

Grid and Screen Supply Circuit Breakers

off (left)

off (left)

off (left)

off (left)

2000 Vv
ov
ov

oV

off

off

off (left to right)

stop

off

off
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Filament Circuit Breaker of £
RF Driver--four switches off g ;
1 kW Amplifier Circuit Breaker off
Torch Blowers off
Water 1/2 flow
@ 15 Min
Aux, Blowers and d.c. Arc Circuit Blowers off
Tube Blower Circuit Breaker off
Water oif
Pad Input Switch off
Main Water off
Capacitor Drain off
Uninténtional Plasma Shut Down
Simultaneocusly
Switching Network Turnoff off (left)
RF Driver full c,c.w.
Immediately
Switching Network Screen off (left)
Plate off (left)
Grid off (left)
Filament off (left)
Re~-Start
Plate Voltage 3000 Vv
Overcutrrent Trips reset

Filament 9.7V



Ground Switch

Switching Network:
Turnoff
Grid
Plate
Screen

RF Driver

Plate Voltage

RF Driver

Plate Voltage

RF Driver

Arc Welder

RF Driver

c.w.

Follow Normal Ignition Procedure

until

until

until

until

on

on (right)
on {right)
on {right)
on (right)

screen current noted,
then full c.c.w.

5000 V

screen current noted,
then full c,c.w.

7500 V

screen current noted,
then full c.c.w.

on

screen current 150 ma
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APPENDIX C

MODIFIED ABEL INVERSION COMPUTER PROGRAM



s Xo N RaREN ]

" NEXT READ 'IN OBSERVED IMTENSYTY({WATTS/CMx*3=-5R) FOR EACH ZONE.THE"

LHTEGER CoDE,Y,.Y1

THTEGER CoUMT

REAL IC,nAPPA

RZAL KOLD i

REAL NE ' -

DIMENSION IC(50)X(50:51),EC(50),KAPPALS0)¢B(50)

JTMENSTON T(50) :

DIMENSLON OIC(26) RE(L)+AC(26)rBC(26),CC(26),0C(26)rCCL(25) g

DIMENSION a(50,51)+¢8X(50,51),C(50,51),0(50,51) 5

DIMENSION TOLD(50YK0LD{S0) rECO(50) 1

DIMENSION XU(1)?YUC(L1) e YNR(26),0ICN{(26) ST S T
READ IN DATA : 5
FIRST CARD CONTAINS RUN CODE,PLASMA RADIUS(CM) +NUMBER OF ZONES i
USED IN ANALYSIS (BETWEEN 4 AND 501, wAVELENGTH (ANGSTROMS), NUMBER OF -
DATA POINTS FED IN (BETWEEN 4 AND 25) 1
FORMATED (I13,F10.2¢110.F10.1,110) ;
IF THIS CARD 1S BLANK PROGRA4 ASSUMES END OF DATA SETS ' o
99 READ(S5+B00) CODErRoNsWLeNOP

N=40 ‘

IF(CODE,Eq,0) 60 TO G20

WRITE(5,801)CONErRrNeWLeNDP

WRITE(L1,800)CODErReNeWL#MOP

OUTSIDE Z20NZ 1S Y=1 ,ONE DATA POINT oM EACH CARp WITH THE ZONE NUMBER
AND THE INTENSITY AS(IZ,1PEIR.3) ‘
THE PROGR4aM ASSUMES THE INTENSITY IS
ZERO AT THE RADIUS OF THE PLASMA
DO 50 Yz=1,N ' ‘
CTOLD(Y)=0,90
KOLO(Y)=D,Q

" 50 CONTINUE

KNOT=G

CoUNT=R
WRITE(A,B27)
D0 100 K=1.HDP

L01



READ(Se803) Yr0ICLY)
WRITE(Bs308) Y, nICLY)
ARITE(LsB16) Y,0ICLY)

100 COMTINUE
00 101 I=1,MDP
Cl=1-1
Ca=NOP ‘
YNROLI=Rx=(C1/C2)

. QICN(I)=01C(NDP=1+1)

101 CONTINUE
YNRINOGP+1)Y =R

= YNR(NDP42)=Rx (1+(1/C2})
QICN(NDP+1)=20.0
OQICN{NDP+2)Y=0.0

CHLL CORFFIYNR, QICNsNOP+2,110¢2¢0oRE P@'AC BCerCCo DC!CCC:XUrYU)

WRITE(R, 812
Do 102 Y=1.N
Cl=N
C2=y
. C3zr*((C1-C2)/(C1))
© = T CALL INTRP4(C3,C4r1)
IC(Y)=Cu
WRITE(S,814) Y,C3.IC(Y)
WRITEC L 814) Y C3.1C(Y)
102 CONTINUE
c CALCULATC SEUMETRIC MATRIX ARRAY
X(NeN+1)=9,0
DO 105 K=Nslir-1
DO 105 f=Kele=}
X{eK+1)=0.0
222050
IF(T.52,K) 60 TO 104
S Ilzivl
20 1903 Jz=IieX
=72+ (X, 1)

801



1A03 COyTINUE

104 ?Y:I-l
zZZ
| ZYZ“H

XK 1)2(R)*( (1= Yf/?YZ)t#Z-(l-ZZ/ZY?)*tE)*tU 5=22
105 CONTINUE

o CALCUL\T EMISSION COEFFICIENTS -Assuws PLASMA OPTTICALLY THIN |

EC(1)=(IC(1))/(2%X(1,2))
IF(EC(1),LT.0,0) EC{1I=0,1
00 250 K=2.N .
SuM=0,.,0
JizK=1
DO 210 J=1.J1
SUM=SUMX Ky J) #EC(J)%2,D
21{ CO'\}TINJ
O ECIKYSIC (K =5UM) 2 (2xX {KeK) ) - e
IF(EC(K) LT, 0.0) ECIK)I=0.0
250 CONTINUE
¢ CALCULATE TEMPERATURE
- 300 CONTINUE
DO 350 Kz=Nylr-1
- e 6THzZ10999, 0 . -
GTL=4U21.0
310 ST=(6TA+5TLI/Z (2.0
NE=ARND(5T)
GECzECEQ(G T+ NE, WL}
IF(GEC.GT,EC(KY) GTH=GT
IF(GEC,ILE,EC (X)) GBTL=6T
IF ({GTH=GTL).5T«05.01%0 To 310
T{K)=(5TH+BTL) 7(2.0)
350 CONTINUE
¢ CALCULATE IPACITY
400 CONTINUE
© DO 425 K=Nsir=1
BUK)I=3LKBDY (vl , T(X))

601



C

‘ RBPPALK) SEC(K) /B (K)
425 CONTINUE
500 CONTINUE

Jd=0

Jozo. -

COUN =couur+1
DO 525 y=y

PCENT= (TOY) - TOLD(Y))/(T(Y))
PCENO= (KAPPA (Y)=KOLD (¥)) /(KAPPA(Y))
PLENES{EC(Y)Y=ECO(Y))/(EC(Y))
IF(PCENT,.GE.0,005)J=1 :
"IF (PCEMO,5E,0,005)du=1
IF (PCENE, GE,0,005)J=1
TOLD(Y)I=T(Y)
KOLD(Y)=KAPPA(Y)

- ECo(YIZES(Y)

526 CONTINUE
IF(J.E2,0) B0 TO 9090
'IF(JJ-hG 9) 60 TO 900

CALCULATE OPTICAL ARRAYS
600 CONTINUE
KOMT=KONT+1 -
00 g2v Y= N
- DO 820 I=1,Y

Aly,T)=(1-EXP (=KAPPA(T)*X(YeI))}/(KAPPA(I})

BX(YrI)o=gAPPA(LI)Y£X (Y1)
ClysI)=0.0
Divel)=n.0

62n CONTINUE

Clir1)=0.0

DULy DI=5X(1e 1)
DO 650 y=2.¢N

00 650 I=1.Y
IF(1.29.1}) 30 71O 630
SUM=0,0

JIF(COUNT,=8,20) 6O°TO 900 ~ ~ 7 Tt

o Mmoo

t

011



[izi=1
20 625 L=1,11
SUM=S5UMeBX LY P L)
625 CONTINUE
Cly, Li=guw
630 CONTINUE
SU=0.d
00 635 L=1,Y
SUM=SUM4BY (Y l)
B35 CONTINUE
IF(1.22,Y) 60 TO 641
Ilz=T+1 '
DO 640 LZIleY ‘ ' -
- GUMASUMSBX (YeL) - S e e,
64y CONTINUE
641 Dy, 1) =sUnm
650 CONTINUE
C "CALCULATE NEw EMMISSION COEFFICIENTS
700 CONTINUE ) :
o CEC(EIS(ICLY ) ZTA CTT LY FATL, DY REXPAX(Ly ) Yy 0 ot
IF(EC(1).LT.,0,0) EC(1I=0,0 !
DO TRT Y=2.N o
SUM=0.49
Yizy=-1
DO 737 iL.=1.Y1
SUM:SUM}(EC(L)*G(YcL})*(Exp(D(Y-Li)+EXPIC(YoL)Jl
737 CONTINUE '
© o EC(YIS(IC(Y)=SUMI/Z{A(Y e Y & (EXPID(YY))I+EXP(C(Y,Y)))})
Coomr o TFGECONY LT 0.0) EC(Y)=0,0 ‘ o o
747 CONTINUE
) G0 TO 390
BOQ FORMAT(I3,F10.,2°110,F10.1,110)
801 FORMAT(1H1,20X, 'ANALYSIS PROGRAM FOR ARGON PLASMA'+///»
1 30X, YRUN CODE ¥S*eIlr/»
2 30X, 'PLASMA RADIUS ISV, FRy3eIX'CM e/ 7

11



30X, 'THERE ARE» e 13, 1%, *ZONES USED IN THE ANALYSISY:/,
30X, "THE CONTINUUM IS 0O9GERVED AT*»F7.101Xe 'ANGSTROMS?,
oy 30X, "THERE WERE'rI4r1Xs*DATA POINTS®)
8Q2 FORMATtlHipzﬂx.'OQSERVFJ INTENSITY s ///018X, *20NEY s 10X,
INTENSITY (#ATTS/%R-CM**&)'://)
803 FOQWAY(I5n1PE18 3
304 FURMAT(15%,I4¢10Xs1PE9,3)
809 FORMAT (1H1,30X, *CALCULATED PLASMA PARAMETERSY///0
© 1 10Xe ' ZONEY 25X, *OBSERVED (MTENSITY?SXrEMISSION COEFFICIENT',
-2 S5Xe'TEMPERATURE'+5X» YABSORPTION COEFFICIENTY,S5Xr *BLACK BODY RAD?
31/0194s "IWATTS/CMa%3-SR) 195X ¢ 1 (WATTS/CMrxl=SR) ',

0 E

ol

TTUTTURT RX e VIEG KELVIN YeSXet v o tCRMAl) vl v (WATTS/CMax3=gR) t /) -

810 FORMAT(lOX;ISpS&:lPFlQ 3,7x-19517 3,9%X'0PF9, 110X
1 1PE12,3.10X,1PEL2,3,/)

813 rORMAr(lot,'zsma'-lox.-R' 20x.'1co.///l

814 FORMATUIO0X»I3:F1l4,3+F20+3)

815 FORMAT(I4,3F20,5)

_ 815‘FORMAT113;F10;17 e e

817 FORMAT (Ip0)

906 CONTINUE C

WRITE OQUT DJATA
WRITE(S,809)
00 919 Yzoisls=1
WRITE(S,810) Y, IC(Y)rEC(Y)rT(Y}tKAPPA(Y)-B(Y)
WRITE{(1,815) Y, EC(Y) e T(Y)rKAPPA(Y)

91y CONTINUE - .
WRITE(S6,817) KONT

50 TO 39
920 CONTINUE
[ ‘E?‘jo . . - -

1t



RKaXaXaXaksl

FUNCTION gaUNT (wl)

THIS FUNCTION CALCULATES THE GAUNT
FACTOR AS A FUMCTION OF WAVELENGTH
{WL=AMBSTROMs) EMPERICALLY BASED ON
DATA 3y JIETER SCHLUTER=Z,ASTROPHYSIK
VOL 61 PAGE g7=1965=-RANGE 3500=6500 1

£ N

IF (WL LT.3500,)s0R, (WLe5T+6500,)) 60 TO =

IF(WheLT.4800,) GO TO 2
IF(wlsLT,4900,) GO TO 1
GAUNT=(0,5/600, ) *{WL~43900,)+1,5

RETURN - - - -
GAUNT=(0.4/100, ) {4900, =yl)+1.5

RETUR:

GAUNT=(0,75/1300.) % (Wl.=-3500.)+1,15

RETUR:

WRITE(B,4) WL
FORMAT{1H1,1Xr *WAVELENGTH OUT OF RANGE IN GAUNTY¢F10,2)
GAUNT=2,0 ]

"RETURN
ugﬂb“\
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'sXsBals

FUNCTION gLKBDY(A,T)
THIS FUNCTION CALCULATES THE RLACKBODY
RADIATION IN(WATTS/SR=CMxx3) FOR A
GIVEN wAVELENGTH(A=ANGSTROMS) AND A

" GIVEN TEMPERATURE (T-DEG K).

C1:50951512

C2z143,86

W=a/1000.0

Ust/1050,0
BLEKBDY=(1/(EXP(C2/U/W)=1) )% (2%C1) /(Wx*5))

END

T RETURM ¢ e

711
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FUNCTLON ARND(T)

THIS FUNCTIONAL ROUTINE CALCULATES THE

ELECTRON AND ION NUMBRER DEHSITY IN CMa3

(wHICH ARE ASSUMED EQUAL) FOr ARGON GAS

AT ONE ATMOSPHERE AND WITHIN THE TEMPERATURE

RANGE OF 4¢J0-~14000 DEG K, THIS PROGRAM

INTERPOLATES BETWEEN VALUES THAT ARE 1000 DEG K

APART ASSUMING AN NzAxTx#(5/4)*EXP(B/T) DEPENDENCE

THE DATA POINTS ARE TAKEN FRoM OLSENsS GASCOMP

- PROGRAM REPORTED ON IN ARL 70~0048 MARCH 1979
DIMEZNSION DT(15)+DN(15)
IF((T.LT.qOO0.0}.0R.(T;GE.14000.01) Go TO 2n1
U0 100 I=1,15
DT(I}=1x1000,0
ON(1)=2,0

{00 CONTINUE e el e

TON(9Y”

‘101

195

DN{4)
DN(S5)
DN(s)
DNY(7)
DN(8)

BLEE RE 11 000X 0

ON(10)
DN(11)=
ON(12)=
DN{13)=
DN(14)=

DO 1‘31 I:u ﬂ-13 . — - ‘n,-- ‘-l..-‘-. . - — hem - L R S .. . - (R
JF({TeGE.DT{I) ) eAND (T LT, DT(I+1)))
CONTINUE ' '

1.272190
1.32E12
2,94E513
2,72E1u
1,u45E15

BIRGELR v = S e e e L

1.51E1s
J.46E16
6,62E16
1.08E17
1,50E17

GO0 TO 195

60 1O 201

A=DNII)

X=(ALOGON(T+21)/DN(T) ) =(5:0/4.0) x (ALOS(DT(I+1) /DT(I} )
SOTID«TI+1)1*X) Z(OT(IY=DT(1%1)) T ”
SONCD) ) (DT (D)%% (5,074 ,01 )% (EXP(B/DT(I)}))

s11



201
202

ARMND=AXT®%(5,0/4, n)*EXD(a/T)

RETUR™N

WRITE(B,202) T

FORMAT(1H1, *TEMPERATURE ouT OF RANoE IN AqND T IS'-Flﬂ 1)
ARND=1.0E13

RETURN

END

911
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FUNCTION ECEQ(TeNoWL) ~
THIS FUNCTION CALCULATES THE CONTINUUM
EMISSION IN yATTS/SR=CMxx4 OF ARGON
AS A FUNCTIO: OF TEMPERATURE(T=DEG.K),
NUM3ER DENSITY OF IONS OR ELECTROMS
HHICH ART ASSUMMED EQUAL (N=CM##%=3)
AND WAVELINSTH(WL=ANGSTROMS),

REAL KellpnF

HE=y,145a15

K=8,616C~5

C=3.0€18

V=g yEL

U2:5-519

SEXP{=(HxV)/{K*T)}

Y (6 045AUNT (WY} 7 (U2)

NF=N/1,(0ES

ZE(NFee2) /(SQRTIT) ®kylkx2)

ECEQ=(1,65E=00xZ) % (Y (1,.0=X)+X)

RETURN ,

END

LTT



SUSROUTINEG 1.SQ({XrYrNORDR,NYP3pLL,C W)
SIMENSIAN !(NY)!Y{NY)rB(MY)vCC(NY:HY),C(NY)
INTEGER P,Q»PQ T -
Pa=0
MEINORIR+]
DO 10 Q=1,M
8(n)=0,
00 15 Iizi,NY
BLNSA R4V I X (D) % (Q=1)
15 CONTINUE
DO 20 P=1,M
CC(ped)=p,
DO 25 Iz), MY :
CC(Pra)=CCIP, QY +XIT) %% (P+p=2)
2% CONTINUE
20 CONTINUE
10 CONTINUE
Do 20 Q:lpM
DO 35 P=zi,M
L=+ (P=1) 4V
o a  mam ame— ‘c(L]:CC(P'G) . - - . - . - Lm e
3% CONTINUE
%0 CONTINUE
CALL SIMA(CsBeMrKS)
IF (KS.EQ,1) Pa=2
~ RETURWN
. .,“..y._.,.END ‘,

8TT
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(@]

SUBROUTINE COEFF (Yo YeNYeTFITINOCROR, IPLOT»IRVPE,PQr

$ ApBrleDICCHXU, YW

DIMENSION X(NY)eY(NY)

DIMENSION A(NY)»BINY) eC{NY) D(MNY)
DIMENSION CC Ny NY)

DIMENSION XU{NY)» YU(NYJpRE(Nv)
I'\ITQGE.!\ PQ

DATA EPS/,01/

GO 0 77

ENTRY INTRPU(XI*YIWIFIT)

GO TO (31,32),IFIT

31 DO 20 I=z1,NYP

K=1

IF(XI.LT.x(I+1)) GO FO 21
20 CONTINUE

21 YI = Q(K)#XI**3+B(K)*XI**2+C(K)*XI+D(K}
T RETURNT

32 YI:O‘
PO 34 J=1,Mm
YIzYI+B(J)*XInx(Jd=1)
3y COnNTINUE
RETURN

*xx CALCULATE FITTING COEFFIFIENTS x%x

77 IF(IPLOT.E6,5 ,0R, IPLOT,ER.8) GO TO 500 °

IF (IPLOT,E0,7) GO TO 200
GO TO (u1,u2),IFIT

41 NYPzNY~j

61T



D0 10 £=1,MYP
¢ COMPUTE CONSTANTS
' X0zxX(K~=1)

XK=x (K)

Xi=x(<+1)

2=y (£4+2)

YOzY{A~1)

YK=Y {X)

Y1lzyY({X#])

Y2z2Y {K+p2)

XC5=X0*X0

XKG=XK* XK

Xlg=X1%x]l

XegmXaxyd

X0C=X05%Xp

XKC=XKSxXK

X1c=X1SxXx3

XeC=X25#X2

XMQ=XK=X0

XMiaXK=X1

TXMa2XK=KET T T T

YMO=YK=Y(

YMizYK~=Y1

YM2zYKe-y2

XMOS=X45=x05

X111 STXK S~y 1S

AM2S=XKS=X25

XM)C=XKC~X0C

XMLCZKKC=x1C

XM2C=XKCwy2C

IF(K.E3,1) GO TO 1t
IF(K.EQ,NYP) GO TO 12

0zZ1



(@]

Lo N o)

FOR INTERNAL PANELS (K=2,NYp=1)
ALRYS  ( (YMO#XMI~YML&XMQ) % (XMOSHXM2~XM25%XMO)
i - YMOxXM2=YM2&XM0) * ( XMOSHXM1=XMISEXMO) )
2 T (XMOCRXMI-XMICHYMO) £ (XMOS A XMBeXM2S XM )
3 w{ XMOCEXM2=XM2C kY MO) x { XMOS#XML=XMLS%XMD) )
BIK)IZ  ( (YMOAXM2=YM2%XMp)=~A (K) % (XMOCEXMamYM2C % XMO)
1 d o UXMOSRXM2aX25xM0)
CiKy= ( YMO=A(K)*XMOC=B(K)%xXMOS 1 7 (XMg)
DIK)= YK - A(ﬂ)*XKC - B(K)*XKS . C(KJ*XK
G0 TO 1§ -

FOR LEFTMOST PANEL (K=1)

11 AlK)=D,

BUKI=  (YMIxXM2=YM2%XML) , (XMIS*XM2~xMEStXM1)
CIKI=  (YMI=B(K)*XM15)/(xml)
DIK)I=  YK~B(K)*XKS=C (K] %xK

FOR RIGHTMOST PANEL (K=NYP)

12 AlK)=1, .
BIK)=  (YMO%XML=YM1%XMO) / (XMOS*XMI-XMIS¢KM0)
ClK)= (YM0=B(K)%XMDS) /tXM0) :
D{K)I=  YK=B(K)%XKS=C(K)%xxK

10 CONTINUE ' : - Sk
RETURH

Bz MMzNORDR+1
RETURN

- LEASY SQUARES WITH 1/RELJERR, WEIBHTING -
200 L=g

MMZNORDOR+ L
207 RMAX=G,
D0 201 I=1,NY
201 RMAXSAMAX1 (RMAXPRE(T))
210°D0 202 r=1.MY & _ T

)

121



203
202

IF(RE(I1,LT,ZPS) RE(I}=EPg

NUM=AMINL (160, rRMAX/RE (1) +EPS) e
IF(NUM.LE, Q) GO TN 202

DO 203 Jd=1.NUM

L=L+1

CXULY=XT)

YU(LIZY (D)

CONTINUE

CONTINUE

IF(IPLOT,EQ,B) GO To 520
IF{iL.LE,30) GO TO 205

- RMAXZRMAX /1, 4 S o

299

205

C

WRITE(6,295) L
FORMAT(21H WIDE WEIGHTING RANGE+IS,i4H  wTS REDUCED)

L=9

GO TO 210

CALL LSQ(XUvYU.NORDR L BycCr C PQ)

“RETURN o T T

C LEAST SQUARES FIT TO HISTOGRAM DATA -
¢t WITH OR WITHOUT 1/REL.ERR. wEIGHTING

500

520

MM=NORDR+1

R=IR .
IF(IPLOT.EG,8) 60 To 207 :

L¥X=0

NBR=0

" DO 1701 Jzg MM

BlJ)=0.
D0 1711 l=1.NY
NUw:l
FLIPLOT,E0,8) NUMSAMINLI(10.+RMAX/RE(T}+EPS)
IF(NU4 LE,0) GO TO 1711
DO 503 {(Mzie.NUM

BlJy= 3(d)+((R+1.)*(X(I+1)*t(J+IR)-X(I)**(J+IR3)*Y(I))

AC(FLOAT () 4R % (X (T+1) %k (IR+1)=X(I)xx (IR+1)} ))

2Z1



9503 CONTINJE
1711 CONTINUE
DO 1702 Kz1.MM : :
e Ry =0 e e e e e
DO 1712 L=1eNY
NUm=1 '
IF(IPLOT.EG,8) NUM= AMINL(lo..RMAX/RF(I>+EpS)
IF(NU4,LE,0) GO TO 1712
00 519 LM=1,NUM

LT TCC (U KYECC(TrRTF ”T“?R¥I.)*i21(X(T¥1T?*tJ+TRT-xIIT**TJ$IR}1 T
1 R (CI+1) u* (K4IR) mX (F) 0 (K+IR) ) ) N
] "/';'“rpLoaT14)+R),(FLoAT(K1+R1#IX(I+1)*i(IR+11"“ T
3 XTIk (TR+1) J&x2 )
~—B1g CONTINUE ~ = - - - ST e e e e e
1712 CONTINUE ‘ o
,,,,,,,,,,, NBRENBRINUM ) e e e e st e o e e e ]
LX‘J+(le)*WM . )
CCALXIZCO(UeK) T e e .
1702 CONTINUE S SR
~ 1701 CONTINGE  — - R B & .
IF{(NBRJLE,225) 6O To 1111 . . e i ~
~—"~vmﬂmax-ﬂmnxyrru ““““““““““ S s o OO
WRITE(6,299) NBR S
G0 TO 520 . e e
C
T1111 CALL STIMA(CrBeMMeIT) ™
IF(IT«EQ.1) 60 TO 999
e B T T ——
WRITE(G&,47) B _
" 37 FORMAT( 24H #x» SINGULAR MATH«IX xuuk ! T T T e
9999 RETURN g
-"999" RETURN -~ o e
. ENo

€el
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R L e JJ“-N,_ e o v e an G arM P e s o R R T v S sq.m&a.--‘---u—-es,-—_—--—_---‘l.f--m [T S S
. e R . s,

e IF (CARSS(ETGA) = TOLY 35r35'40 T T

TTTTTDOTI0CIEILN T -

-7 IMAXST

SUBROUTINE SIMA(A+BeNyKS)

"~ DIMENSION A(1)e BI(1)
A = MATRIX OF COEFFICIENTS STORES THE ROws OF AN NXN MATRIX

ST IN ONE COLUMN, THE N ELEMENTS OF THE FIRST ROW FORM THE

ST TTHE NEXT N ELEMENTg OF A ECT,
A = MATRIX OF COEFFICIENTS STORED COLUMNNISE. THESE ARfF

NESTROYED IN THE COMPUTATION, THME SIZE OF MATRIX A IS
N BY N,
"7 T TH - VECTOR OF ORIGINAL CONSTANTS (LENSTH N), THESE ARE
. REPLACED BY FINAL sOLUTION vALUES, VECTOR X, )
TN TNUMBER OF TEQUATIONS CAND VARTABLES, - ¢ e eemme s
KS - OUTPUT DIGIT, - -
T T 0 FOR A NORMAL SOLUTION,
1 FOR A SINGULAR SET oOF Eouurxons

et 4

TOL=0,0 . '
KS=0 _ - .

D0 85 d_l,N o
\JY d+1 - e, A, R B LT IR PR SO
NTENN LIPS S “
T BIGA=D,
ITzud=J
[d=1T+I :
" IF ( ABS(BIGA) = ABS(A(IJ))) 20,30+20
20 BIGA= A(IJ) L -

30 CONTINUE e

35 KS=z1
T REFORN- -

40 TlzJ+N¥(Ja2)
CCITRIMAXwJ

FIRST N ELEMENTS OF THE A MATRIXS ?HE SECOND ROW FoRMS

A



"00 59 K=Jd,N

e e D Y R I T

50

”55_
R l..xU:IAQS“:I.x,..._ e T o e

I2=11+1T

SAVESA(IL) T
ACI1I=A(I2)

A{12)=SAVE
ACI1)Y=A(I1)/BIGA
SAVE=BLIMAXY w0
BOIMAX)=B(J)

BUJ)=SAVE/BIGA

IF(J-N)55.70-55 .
i‘@s-*}*(g}-l} PR - e e - e

DO 65 IX=JYeN

ITzy=1X
00 80 UXSIYON
IXJX—N*(dx-1)+IK

T JIIYEINIREIT

60

ALIXIX)IZA(IXIX) = (A(IXJ)*A(JJI)’

----- B IR =BTy (8 (AL INH - -~

76

S ETENEN o o e

NYzpn=1

DG g0 J'lfNY

- 1AZITed

e~ s -WTGQN o mea - . e e e e PO ..‘..,_,-_. -t

IB=N=J

D0 g0 K= L,J

- B{I8I=8 (IBY=A(TA)%B(IC)

IAZTA-N" 7
IC21C=-1
RETURN =~ 7~

END

[ NP
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